The search functionality is under construction.

Author Search Result

[Author] Tadahiro KURODA(34hit)

21-34hit(34hit)

  • A 9-bit 100-MS/s 1.46-mW Tri-Level SAR ADC in 65 nm CMOS

    Yanfei CHEN  Sanroku TSUKAMOTO  Tadahiro KURODA  

     
    PAPER-Circuit Design

      Vol:
    E93-A No:12
      Page(s):
    2600-2608

    A 9-bit 100-MS/s successive approximation register (SAR) ADC with low power and small area has been implemented in 65-nm CMOS technology. A tri-level charge redistribution technique is proposed to reduce DAC switching energy and settling time. By connecting bottom plates of differential capacitor arrays for charge sharing, extra reference voltage is avoided. Two reference voltages charging and discharging the capacitors are chosen to be supply voltage and ground in order to save energy and achieve a rail-to-rail input range. Split capacitor arrays with mismatch calibration are implemented for small area and small input capacitance without linearity degradation. The ADC achieves a peak SNDR of 53.1 dB and consumes 1.46 mW from a 1.2-V supply, resulting in a figure of merit (FOM) of 39 fJ/conversion-step. The total active area is 0.012 mm2 and the input capacitance is 180 fF.

  • Vertical Link On/Off Regulations for Inductive-Coupling Based Wireless 3-D NoCs

    Hao ZHANG  Hiroki MATSUTANI  Yasuhiro TAKE  Tadahiro KURODA  Hideharu AMANO  

     
    PAPER-Computer System

      Vol:
    E96-D No:12
      Page(s):
    2753-2764

    We propose low-power techniques for wireless three-dimensional Network-on-Chips (wireless 3-D NoCs), in which the connections among routers on the same chip are wired while the routers on different chips are connected wirelessly using inductive-coupling. The proposed low-power techniques stop the clock and power supplies to the transmitter of the wireless vertical links only when their utilizations are higher than the threshold. Meanwhile, the whole wireless vertical link will be shut down when the utilization is lower than the threshold in order to reduce the power consumption of wireless 3-D NoCs. This paper uses an on-demand method, in which the dormant data transmitter or the whole vertical link will be activated as long as a flit comes. Full-system many-core simulations using power parameters derived from a real chip implementation show that the proposed low-power techniques reduce the power consumption by 23.4%-29.3%, while the performance overhead is less than 2.4%.

  • A 4-Gbps Quasi-Millimeter-Wave Transmitter in 65 nm CMOS and a Fast Carrier and Symbol Timing Recovery Scheme

    Vishal V. KULKARNI  Hiroki ISHIKURO  Tadahiro KURODA  

     
    PAPER-Integrated Electronics

      Vol:
    E93-C No:1
      Page(s):
    120-127

    A CMOS wireless transceiver operating in the 14-18 GHz range is proposed. The receiver uses direct conversion architecture for demodulation with a fast carrier and symbol timing recovery scheme. The transmitter uses a PLL and an up-conversion mixer to generate BPSK modulated signal. A ring oscillator is used in the PLL to make faster switching for burst transmission obtaining high speed low power operation. The transceiver operation has been verified by system simulation while the transmitter test-chip was fabricated in 65 nm CMOS technology and verified with measured results. The transmitter generates a bi-phase modulated signal with a center frequency of 16 GHz at a maximum data rate of 4 Gb/s and consumes 61 mW of power. To the best knowledge of authors, this is lowest power consumption among the reported transmitters that operate over 1 Gb/s range. The transceiver is proposed for a target communication distance of 10 cm.

  • A 4–10 bit, 0.4–1 V Power Supply, Power Scalable Asynchronous SAR-ADC in 40 nm-CMOS with Wide Supply Voltage Range SAR Controller

    Akira SHIKATA  Ryota SEKIMOTO  Kentaro YOSHIOKA  Tadahiro KURODA  Hiroki ISHIKURO  

     
    PAPER

      Vol:
    E96-A No:2
      Page(s):
    443-452

    This paper presents a wide range in supply voltage, resolution, and sampling rate asynchronous successive approximation register (SAR) analog-to-digital converter (ADC). The proposed differential flip-flop in SAR logic and high efficiency wide range delay element extend the flexibility of speed and resolution tradeoff. The ADC fabricated in 40 nm CMOS process covers 4–10 bit resolution and 0.4–1 V power supply range. The ADC achieved 49.8 dB SNDR and the peak FoM of 3.4 fJ/conv. with 160 kS/sec at 0.4 V single power supply voltage. At 10 bit mode and 1 V operation, up to 10 MS/s, the FoM is below 10 fJ/conv. while keeping ENOB of 8.7 bit.

  • Low Power CMOS Design Challenges

    Tadahiro KURODA  

     
    INVITED PAPER

      Vol:
    E84-C No:8
      Page(s):
    1021-1028

    Technology scaling will become difficult due to power wall. On the other hand, future computer and communications technology will require further reduction in power dissipation. Since no new energy efficient device technology is on the horizon, low power CMOS design should be challenged. This paper discusses what and how much designers can do for CMOS power reduction.

  • 6 W/25 mm2 Wireless Power Transmission for Non-contact Wafer-Level Testing

    Andrzej RADECKI  Hayun CHUNG  Yoichi YOSHIDA  Noriyuki MIURA  Tsunaaki SHIDEI  Hiroki ISHIKURO  Tadahiro KURODA  

     
    PAPER

      Vol:
    E95-C No:4
      Page(s):
    668-676

    Wafer-level testing is a well established solution for detecting manufacturing errors and removing non-functional devices early in the fabrication process. Recently this technique has been facing a number of challenges, resulting from increased complexity of devices under test, larger number and higher density of pads or bumps, application of mechanically fragile materials, such as low-k dielectrics, and ever developing packaging technologies. Most of these difficulties originate from the use of mechanical probes, as they limit testing speed, impose performance limitations and add reliability issues. Earlier work focused on relaxing these constraints by removing mechanical probes for data transmission and DC signal measurement and replacing them with non-contact interfaces. In this paper we extend this concept by adding a capability of transferring power wirelessly, enabling non-contact wafer-level testing. In addition to further improvements in the performance and reliability, this solution enables new testing scenarios such as probing wafers from their backside. The proposed system achieves 6 W/25 mm2 power transfer density over a distance of up to 0.32 mm, making it suitable for non-contact wafer-level testing of medium performance CMOS integrated circuits.

  • System LSI: Challenges and Opportunities

    Tadahiro KURODA  

     
    INVITED PAPER

      Vol:
    E89-C No:3
      Page(s):
    213-220

    Scaling of CMOS Integrated Circuit is becoming difficult, due mainly to rapid increase in power dissipation. How will the semiconductor technology and industry develop? This paper discusses challenges and opportunities in system LSI from three levels of perspectives: transistor level (physics), IC level (electronics), and business level (economics).

  • Analysis and Evaluation of Electromagnetic Interference between ThruChip Interface and LC-VCO

    Junichiro KADOMOTO  So HASEGAWA  Yusuke KIUCHI  Atsutake KOSUGE  Tadahiro KURODA  

     
    BRIEF PAPER

      Vol:
    E99-C No:6
      Page(s):
    659-662

    This paper presents analysis and simple design guideline for ThruChip Interface (TCI) as located by LC-VCO which is used in high-speed SoC. The electromagnetic interference (EMI) from TCI channels to LC-VCO is analyzed and evaluated. The accuracy of the analysis and design guidelines is verified through the test-chip verification.

  • A Dynamic Offset Control Technique for Comparator Design in Scaled CMOS Technology

    Xiaolei ZHU  Yanfei CHEN  Masaya KIBUNE  Yasumoto TOMITA  Takayuki HAMADA  Hirotaka TAMURA  Sanroku TSUKAMOTO  Tadahiro KURODA  

     
    PAPER-Device and Circuit Modeling and Analysis

      Vol:
    E93-A No:12
      Page(s):
    2456-2462

    The accuracy of the comparator, which is often determined by its offset, is essential for the resolution of the high performance mixed-signal system. Various design efforts have been made to cancel or calibrate the comparator offset due to many factors like process variations, device thermal noise and input-referred supply noise. However, effective and simple method for offset cancel by applying additional circuits without scarifying the power, speed and area is always challenging. This work explores a dynamic offset control technique that employs charge compensation by timing control. The charge injection and clock feed-through by the latch reset transistor are investigated. A simple method is proposed to generate offset compensation voltage by implementing two source-drain shorted transistors on each regenerative node with timing control signals on their gates. Further analysis for the principle of timing based charge compensation approach for comparator offset control is described. The analysis has been verified by fabricating a 65 nm CMOS 1.2 V 1 GHz comparator that occupies 25 65 µm2 and consumes 380 µW. Circuits for offset control occupies 21% of the areas and 12% of the power consumption of the whole comparator chip.

  • Split Capacitor DAC Mismatch Calibration in Successive Approximation ADC

    Yanfei CHEN  Xiaolei ZHU  Hirotaka TAMURA  Masaya KIBUNE  Yasumoto TOMITA  Takayuki HAMADA  Masato YOSHIOKA  Kiyoshi ISHIKAWA  Takeshi TAKAYAMA  Junji OGAWA  Sanroku TSUKAMOTO  Tadahiro KURODA  

     
    PAPER

      Vol:
    E93-C No:3
      Page(s):
    295-302

    Charge redistribution based successive approximation (SA) analog-to-digital converter (ADC) has the advantage of power efficiency. Split capacitor digital-to-analog converter (CDAC) technique implements two sets of binary-weighted capacitor arrays connected by a bridge capacitor so as to reduce both input load capacitance and area. However, capacitor mismatches degrade ADC performance in terms of DNL and INL. In this work, a split CDAC mismatch calibration method is proposed. A bridge capacitor larger than conventional design is implemented so that a tunable capacitor can be added in parallel with the lower-weight capacitor array to compensate for mismatches. To guarantee correct CDAC calibration, comparator offset is cancelled using a digital timing control charge compensation technique. To further reduce the input load capacitance, an extra unit capacitor is added to the higher-weight capacitor array. Instead of the lower-weight capacitor array, the extra unit capacitor and the higher-weight capacitor array sample analog input signal. An 8-bit SA ADC with 4-bit + 4-bit split CDAC has been implemented in a 65 nm CMOS process. The ADC has an input capacitance of 180 fF and occupies an active area of 0.03 mm2. Measured results of +0.2/-0.3LSB DNL and +0.3/-0.3LSB INL have been achieved after calibration.

  • A 1.2 Gbps Non-contact 3D-Stacked Inter-Chip Data Communications Technology

    Daisuke MIZOGUCHI  Noriyuki MIURA  Takayasu SAKURAI  Tadahiro KURODA  

     
    PAPER-Interface and Interconnect Techniques

      Vol:
    E89-C No:3
      Page(s):
    320-326

    A wireless interface for stacked chips in System-in-a-Package is presented. The interface utilizes inductive coupling between metal inductors. S21 parameters of the inductive coupling are measured between chips stacked in face-up for the first time. Calculations from a theoretical model have good agreement with the measurements. A transceiver circuit for Non-Return-to-Zero signaling is developed to reduce power dissipation. The transceiver is implemented in a test chip fabricated in 0.35 µm CMOS and the chips are stacked in face-up. The chips communicate through the transceiver at 1.2 Gb/s/ch with 46 mW power dissipation at 3.3 V over 300 µm distance. A scaling scenario is derived based on the theoretical model and measurement results. It indicates that, if the communication distance is reduced to 13 µm in 70 nm CMOS, 34 Tbps/mm2 will be obtained.

  • A 6.5Gb/s Shared Bus Using Electromagnetic Connectors for Downsizing and Lightening Satellite Processor System

    Atsutake KOSUGE  Mototsugu HAMADA  Tadahiro KURODA  

     
    PAPER

      Pubricized:
    2021/09/03
      Vol:
    E105-A No:3
      Page(s):
    478-486

    A 6.5Gb/s shared bus that uses a 65nm CMOS pulse transceiver chip with a low frequency equalizer and electromagnetic connectors based on two types of transmission line couplers is presented. The amount of backplane wiring is reduced by a factor of 1/16 and total connector volume by a factor of 1/246. It reduces the size and weight of a satellite processor system by 60%, increases the data rate by a factor of 2.6, and satisfies the EMC standard for withstanding the strong shock of rocket launch.

  • Transponder Array System with Universal On-Sheet Reference Scheme for Wireless Mobile Sensor Networks without Battery or Oscillator

    Takahide TERADA  Haruki FUKUDA  Tadahiro KURODA  

     
    PAPER-Analog Signal Processing

      Vol:
    E98-A No:4
      Page(s):
    932-941

    A rotating shaft with attached sensors is wrapped in a two-dimensional waveguide sheet through which the data and power are wirelessly transmitted. A retrodirective transponder array affixed to the sheet beamforms power to the moving sensor to eliminate the need for a battery. A universal on-sheet reference scheme is proposed for calibrating the transponder circuit delay variation and eliminating a crystal oscillator from the sensor. A base signal transmitted from the on-sheet reference device is used for generating the pilot signal transmitted from the sensor and the power signal transmitted from the transponder. A 0.18-µm CMOS transponder chip and the sheet with couplers were fabricated. The coupler has three resonant frequencies used for the proposed system. The measured propagation gain of the electric field changes to less than ±1.5dB within a 2.0-mm distance between the coupler and the sheet. The measured power transmission efficiency with beamforming is 23 times higher than that without it. Each transponder outputs 1W or less for providing 3mW to the sensor.

  • Constant Magnetic Field Scaling in Inductive-Coupling Data Link

    Daisuke MIZOGUCHI  Noriyuki MIURA  Hiroki ISHIKURO  Tadahiro KURODA  

     
    PAPER-Electronic Circuits

      Vol:
    E91-C No:2
      Page(s):
    200-205

    A wireless transceiver utilizing inductive coupling has been proposed for communication between chips in system in a package. This transceiver can achieve high-speed communication by using two-dimensional channel arrays. To increase the total bandwidth in the channel arrays, the density of the transceiver should be improved, which means that the inductor size should be scaled down. This paper discusses the scaling theory based on a constant magnetic field rule. By decreasing the chip thickness with the process scaling of 1/α, the inductor size can be scaled to 1/α and the data rate can be increased by α. As a result, the number of aggregated channels can be increased by α2 and the aggregated data bandwidth can be increased by α3. The scaling theory is verified by simulations and experiments in 350, 250, 180, and 90 nm CMOS.

21-34hit(34hit)